

Daily Tutorial Sheet-3 Level – 1

32.(D) Structure of NO₂

 $\begin{array}{ccc} \circ N = O \\ \downarrow & \text{It has one unpaired electron.} & \therefore & \text{It is paramagnetic} \end{array}$

33.(C) $AlF_4^- \longrightarrow hybridisation of Al is sp³$

34.(D) Structure of $NH_3 \longrightarrow N$ $H \nearrow H$

 $\mathrm{BF}_3:\mathrm{B}\ \mathrm{1s}^2\mathrm{2s}^2\mathrm{2p}^1$

The vacant p_x outermost shell orbital lies $\overset{\ \, }{F}$ $\overset{\ \, }{F}$ perpendicular to the plane.

(A) $\rightarrow \mu_{net}$ of BF₃ = 0

(C) \rightarrow NH₃ pyramidal in shape

sp² hybridised orbitals

- 35.(B) Alkali and Alkaline earth metals form ionic bonds with non-metals.
- **36.(C)** It depends on the electronegativity difference. (Electronegative difference between C and F is maximum)
- 37.(C) Bond length decreases with increase in s-character as s-orbital is smaller than p-orbital.

(least s-character)

38.(D) F F Trigonal planar structure $\mu_{net} = 0$

39.(A) Bond Length $\propto \frac{1}{\text{Bond Order}}$

40.(C) O F CI—F

sp³d hybridisation

- **41.(C)** Triple bond has the max-value of bond energy.
- **42.(B)** Structure of NO_2^+ is $[O = N = O]^+$
- **43.(A)** : $\ddot{B}rF_3$ $2\ell p + 3bp = sp^3d$ \Rightarrow It will have T-Shape

44.(B)
$$BH_3 \rightarrow sp^2$$
 Trigonal planar

$$CH_3^- \rightarrow sp^3$$
 Pyramidal

$$CH_3^+ \rightarrow sp^2$$
 Trigonal planar

$$CH_3^+ \rightarrow sp^2$$
 Trigonal plat
 $SO_4^{2-} \rightarrow sp^3$ Tetrahedral